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We introduce a new numerical method, called “Surrer,” for the
simulation of two- and three-dimensional flows with several fluid
phases and free interfaces between them. We consider incompressible
fluids obeying the Navier-Stokes equation with Newtonian viscosity in
the butk of each phase. Capillary forces are taken into account even
when interfaces merge or break up. Fluid interfaces are advanced in
time using an exactly volume canserving variant of the volume of fluid
algorithrn, thus allowing for full symmetry between fluid phases. The
Navier-Stokes equation is solved using staggered finite differences on
a MAC grid and a split-explicit time differencing scheme, while incom-
pressibility is enforced using an iterative multigrid Poisson solver.
Capillary effects are represented as a stress tensor computed from
gradients of the volume fraction function. This formulation is com-
pletely independent of the topology of interfaces and relatively easy to
implement in 3D. It also allows exact momentum conservation in the
discretized algorithm. Numerical spurious effects or “parasite currents”
are noticed and compared to simitar effects in Boltzmann lattice gas
methods for immiscible fluids. Simulations of droplets pairs colliding in
2D and in 3D are shown. Interface reconnection is performed easily,
despite the large value of capillary forces during reconnection. 1 1994
Academic Press, [nc.

1. INTRODUCTION

in many scientific and technical applications it is impor-
tant to describe and predict the behavior of moving {luid
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interfaces. Topological changes connecied to the processes
of merging and break up, as, for instance, in the coliision
between fluid drops make this problem both interesting and
difficult,

In this article we present a new numerical method, based
on the volume of fluid method (vor) of [10], that is able to
simulate the behavior of a mixture of immiscible fluids with
non-zero surface tension. The noveliy of our method con-
sists in how we model surface tension. The simplest idea is
to compute the curvature of the interface and then add a
force to the Muid momentum balance. We have instead
preferred to introduce surface tension as a correction to the
momentum stress tensor. This correction is constructed
starting from the local gradients of the volume fraction. The
resulting scheme is simple to code, computationally
efficient, and easy to parallelize. We have implemented our
method in both two and three dimensions, and we are
currently working on a parallel implementation.

The existing methods for the treatment of interfaces
between immiscible fluids fall in two broad categories: front
capluring and front tracking. In front capturing methods, a
ditta structure is defined in the entire computational domain
{lor instance, a concentration, or volume [raction field, C).
Evolution schemes for € will capture any discontinuities of
C and force them to propagate at the interface velocity. This
method has the disadvantage that many errors are
accumulated while evolving the field C: the most common
is numerical diffusion, which makes the discontinuities
representing the interface rapidly disappear. On the other
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hand, in the {ront tracking approach a large number of
markers follow the position of the interface explicitly. In this
category we find volume marker [2] and interface marker
[3] methods. Deformable finite clement methods [4] may
be classified as front tracking methods, where boundary
elements follow the discontinuity.

Even though front tracking methods can follow the
evolution of a simple interface very accurately, they encoun-
ter difficulties in dealing with changes in interface topology.
Part of the problem stems from the fact that in these
methods one tries to envision and to operate on interfaces as
if they were large-scale coherent structures. Moreover, it is
intrinsically difficult to write a front tracking method that is
able to ensure the respect of global constraints, such as
volume and momentum conservation.

The method we present here is local, except for the
calculation of the pressure. The other calculations,
including that of the surface tension tensor are completely
local and can easily be implemented on massively parallel
computers.

It should be stressed at this point that we are not model-
ling in any detail the microscopic interfacial physics [1],
which is clearly dependent on intermolecular forces or other
microscopic details at the interface such as the presence of
surfactant molecules. These phenomena have typical time
and length scales far beyond the scope and computational
resources of CFD simulations. However, at the points and
times of reconnection in an interface simulation such
microscopic effects can be relevant. In these cases we think
of our correction to the stress tensor as phenomenological.

We will refer to the general method described in this
paper as “SURFER.” The two essential features of SURFER are
the ability to capture interfaces, and a computationally
efficient algorithm for surface tension. While for the front
capturing scheme we have been mostly inspired by the vor
algorithm of [107, the surface tension algorithm is directly
related to what is used in Boltzmann lattice gases [7], 1o
model immiscible fluids. The latter method is a sort of finite
difference extension of the lattice gas automaton method
described in [6] (see also [5]).

The principal advantage of voF, compared to other front
capturing methods, is the inherent volume conserving
nature of the fluxing scheme as its core. Unfortunately, in
the original version of vor this advantage is lost because of
the need to eliminate small errors, such as the flotsam
generated by advancing interfaces. We will show that, by
imposing symmetry between the fluid phases and incom-
pressibility of the velocity field, voF can be modified so that
the most dangerous part of the flotsam is eliminated and
exact volume conservation is recovered. To ensure that the
incompressibility condition is accurately obeyed, our
Navier-Stokes solver makes use of a multigrid method.

The idea for SURFER and the 2D code were developed by
Zaleski, following vor ideas and multigrid ideas of [17].
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{(We never used, however, the original vorF code). The results
of Section 2.4 were obtained by Lafaurie. The 3D implemen-
tation of the SURFER technigue was by Nardone, Scar-
dovelli, and Zanetti.

In section two we discuss the voF method and our
modifications to it. The third section is dedicated to the
Navier-Stokes solver and to the implementation of the sur-
face tension algorithm. The fourth section reports on the
first numerical tests of SURFER. In particular we have tested
our surface tension algorithm in detail and considered flow
examples, i.e., liquid droplet collisions in 2D and 3D that
emphasize interface reconnection. The last sections contain
conclusions and acknowledgments.

2. THE KINEMATIC PROBLEM

The first task of SURFER is to advance an interface with a
prescribed velocity field, a purely kinematic problem. This is
done by fluxing the volume fraction from one cell to its
neighbors. We first define the basic upwind and downwind
fluxing schemes used for that purpose. Then we describe
how either of these schemes is selected in a cell. Finally we
show the results in some simple cases.

2.1. Elementary Downwind and Upwind Schemes

Let us consider the incompressible flow of two immiscible
fluids. The divergence-free velocity field u(x, ) obeys
V.u=90. (1)

The location of the two fluids is specified with the help of a
volume fraction function C, with C =1 inside one fluid and

C =0 in the other. We can express volume conservation of
the first fluid as

éC
E‘!-V-(UC):O.

(2)
In situations where C varies sharply on interfaces the above
equation is understood in a weak sense. The description of
the problem should not depend on the order used to label
the different fluid phases and thus the equation above
should be invariant with respect to the transformation
C — 1 — C. This is true if and only if Eq. (1) is satisfied. It is
therefore important that the numerical scheme used to
simulate the time evolution of the fluid phases enforces (1)
as strictly as possible. We are currently considering the
extension of the method to compressible fiow, but in this
paper we consider only divergence-free flows,

Our numerical method will represent physical reality by
subdividing the domain into square or cubic cells of size "
C"(x) is the volume fraction of the cell centered at x and
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occupied by fluid 1 at time ¢,. A natural choice for dis-
cretization of the velocity field u is to define it on cell
boundaries, i€, at points xF =x+ i¢,, where ¢, = ke,
points to the neighboring cell in direction %, and e, is a
Cartesian unit vector. We describe the volume flux with f.
This flux is again discretized on cell boundaries and we
adopt the convention that f,{x;") represents the outgoing
flux of C from the cell at x to the cell at x + ¢, across the
intermediate boundary.
A conservative method will then be of the form

C' ) =C"x)+ 3 LA = filx)1 (3)

[t is interesting to discuss first the symmetry between
phases | and 2 of the discrere method. The volume fraction
for phase 2 is C" =1 — C. We shall see when we give the full
definition of the fluxes that the fluxes f; computed from C’
obey

k= tth— 1y (4)

Replacing C with 1 — C’ in Eq. (3) yields
D
C"* ' x)=C"x)+:V'u+ 3 [filx)—/x )1, (5)
k=1

where Viou=h" '[P, u X, )~ ui(x, )] is a discrete
divergence operator. From Eqs. (3) and (5) we see that the
method s symmetric by exchange of phases 1 and 2 if and
only if the discrete incompressibility condition V*-u=0
holds everywhere in the domain.

In general, f,(x ;" } is estimated as a product of u,(x,") by
a locally determined value of the volume fraction C(x/ ).
There are many possible ways to define C(x;") but here we
will use either an “upwind” scheme, that is,

Cupwind(x;’ ) = C{x: - gck/z)’
or a “downwind” scheme, that is,
Cdownwind(x: ) = C(x: + ECk/zja

where & = signfu,).

While the “wupwind” scheme iz well known (eg.,
Ref. [11]) to be stable but diffusive, the “downwind” one is
unstabie; but it has some desirable properties for interface
tracking. Figure 1 shows an ideal interface before and after
a downwind step. The front visibly sharpens after the step-
ping.

Both fluxing schemes have some desirable properties.
They are simple and involve only nearest neighbors.
Moreover, they both yield the correct speed for interfaces
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(a) X (b) X

FIG. 1. Two steps of the downwind method. The fluid velocity is from
left to right. With respect to cell face f the downwind cell is A and the
upwind cell is B. The downwind cell 4 is empty and thus flux across fis
blocked. Thus, the front sharpens in time.

under the assumption that these remain sharp and.are
nearly flat. Consider a uniform veiocity field u. The speed
of the interface may be obtained by a classical Rankine—
Hugoniot argument [187]. The volume 40 flowing into the
interface during time J¢ across a surface S is u -n 815, where
nis the normal to the surface. Since the volume is conserved,
this must also be the increase in volume of phase 1 during
time Jz. This yields the speed of the interface to be u-n.

Despite its advantages, the instability of the downwind
method may, however, leads to unphysical results, as, for
example, in Fig. 2, where the situation resulting from a few
more downwind steps is shown. To avoid such pathologies
we wil use a somewhat more complex mixture of these two
fluxing algorithms.

2.2, Definition of the Fluxing Schemes

We will now discuss in more detail how the fluxing
schemes are actually implemented. The essential point here
is that the fluxes should not be such that they either under-
flow or overflow the cells.

We will assume for simplicity that u, > 0. The flux com-
puted at point x;7, f(x}), is defined as “incoming” for the
cell at x + ¢, while it is “outgoing” for the cell at x. We define
two basic fluxing schemes, the upwind scheme resulting in a
flux /* and the downwind scheme resulting in a flux /.

—

FIG. 2. The fate of the elementary downwind scheme, following the
two steps of Fig. 1. The upwind cell tends to overflow.
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The flux in the upwind scheme is

Sy = F7(x0) = Louix )/h] Cix), {6)

where 1 and A are the time step and mesh size. Thus when-
ever the CFL condition

T |ul/h<1 (7}

is verified we are guaranteed that we are not out-fluxing

more than what is contained in the cell.

On the other hand, in the downwind fluxing scheme

S )= 7 (x¢ ) = [rul(x,0 )/h] Clx +¢y), (8)

and therefore we could, in principle, try to extract from the

cell at x more than what it contains. To avoid this we

proceed as follows. We first constrain the concentration at

X + ¢, within its legal values, and then we construct the
putative flux

Foix}) = [ru(x; )/h] max{0, min[1, C(x +¢,)]}. (9)

Now, as we discussed above, we want our numerical scheme
to be symmetric between the transport of one phase or the
other. Thus we have three distinct cases depending on the
value of C(x}):

a: C(x) < f=(x)

BT (x)<COO<I—mulx S )h+ ™ (x,))

yil—tu(x}yh+ F(x;) < C(x).

(10)

When u < 0, opposite signs are taken for « and . From
(4) cases u and y are exchanged by the symmetry C - 1 —-C.
Moreover, cases x and y may not simultaneously occur if
and only if the CFL condition,

luf t/h <1, (11)

is satisfied. In what follows we will always require that this
condition is fulfilled.

In case & we limit the flux to what is necessary for a clean
sweep of the upwind (at x) cell. In case § the upwind cell is
neither too empty nor too full and we leave the fluxes as they
are. Finally, case y is just the symmetric of case a by the

exchange of phases | and 2. Thus, we wili redefine the
downwind flux as

a f(x7 ) =C(x)
B:f(xt)=F"(x;)
vif o (x7 ) =tu(x ) h— 1+ C(x).

(12)
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One way to achieve this in Fortran is similar to the one
proposed in Ref. [10]:

v=tau*u/h

ftilde=v % cdownwind

P=MIN{cupwind, ABS{ftilde))
F=BIGN(v) » MAX(f, ABS{v)-1l+cupwind)

with obvious notations.

2.3. Choice of Upwind and Downwind Schemes

The front sharpening aspects of the downwind scheme are
just what we want when the interface is perpendicular to the
flow. However, when the interface is parallel to the flow
direction, as schematically represented on Fig 3, the
downwind scheme tends to wrinkle it. In fact, the situation
depicted on Fig. 3 is quite similar to the one shown in Fig. 1,
but now the front sharpening tends to create spikes on the
interface. Thus, we use the downwind scheme whenever
propagation is mainly perpendicular to the interface and the
upwind scheme whenever it is paralle] to the interface. Let
the angle with the & direction be

8. {x}=arc cos(u), (13)

where n, is the local approximation to the interface normal

n=V:C/|V'(C| (14)

and V" is a finite difference approximation to the gradient
operator. We define a critical angle 8, and use the following
definition for the fluxes:

fo=f&, ie,upwind scheme for 8, <#,,
fi=1,, ie, downwind scheme, modified as in 2.2,
otherwise.

e

[

FIG. 3. A configuration where the interface is nearly parallel to the
flow and to the horizontal axis. The thick line shows the original configura-
tion while the thin line shows schematically the effect of the downwind
scheme.
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A problem with this definition of the fluxes is that, in
almost uniform regions of a given phase, mixed cells or flot-
sam are locked in place. This may be noted easily since the
downwind scheme results in null fluxes for isolated flotsam.
We unlock the flotsam by propagating it with an upwind
scheme. We introduce a “flotsam indicator field” /{x ) which
is | when the cell is considered a flotsam and O otherwise.
Various methods are used for the numerical definition and
detection of flotsam. One may, for instance, consider that a
cell, all of whose nearest neighbors are of the opposite
phase, is flotsam. Then, whenever all first neighbors are
either almost fuil (i.e., C = 1) or almost empty (i.e., C=0),
we let I=1; otherwise /=0. This has the effect of treating
the homogeneous regions with the upwind scheme, but
there both schemes are equivalent. We then have the final
definition of the fluxes

for

fk=f:
fe=f¢

f.<8, or

(15)
otherwise,

2.4. Results for Pure Interface Propagation

While we are unable to prove the stability of our scheme
a priori, numerical tests show that thin interfaces are stable
and well preserved for adequately chosen critical angles 8,.

In a first test we fill a square domain of size 0.125 x 0.125
with phase | and attempt to propagate it in a uniform
velocity field (u, v)=(1, —1). The results for #.=1 and a
64 x 64 grid are shown on Fig. 4. Level lines at C =0.05, 0.4,
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FIG. 4. Propagation of a square cell for 8, =1, 64 x 64 grid.

a0r

O

20 60

LAFAURIE ET AL.

volume fraction ot time 3

volume fraction
.

ct time &

100¢

50F

0

501

O

"

50 100

volume fraction ot time 3

50

volume fraction

100

at time 6

2501

200

150

501

)

i i

g

250

200

150

100

50

D ]

50 100 150

200

250

100

50

150

200 2850

FIG. 5. Propagation of a square cell, 128 x 128 and 256 x 256 grids.

0.6, and 0.95 are shown. While propagation creates some
damage, it is sufficiently limited. Figure 5 shows results for
resolutions 128 x 128 and 256 x 256,

The effect of the critical angle is shown on Fig. 6. For a
very diffusive (i.e., upwind biased) value of 6 =0.1 we
observe spreading of the object. For very anti-diffusive
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FIG. 6. Effect of the critical angle on propagation.
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FIG. 7. Rotation of a rectangle.

choices, the front becomes unstable. We found that values of
I < f,.< 105 were optimal.

A more difficuit test is the rotation of a rectangle, as per-
formed, for instance, by Chorin for a nine-point scheme in
Ref. [9]. Our numerical experiments are shown on Figs. 7
and 8. A larger amount of flotsam is seen on large lattices
(Fig. 8}).

volurme troction gt time 3 volurme froction ot time 6
v v v T

1008 h ook A

S0 h sof A

L » s,

5¢ 100 50 100

volume fraction at time 3 valume fraction at time &

2501 2500 q

00¢ {1 zoof p

150 . 1 1sop 1
g o

1001 - 1 100F Lo 4

Ele] g 50+ 4

" . —_ 2 " N " " " s
50 100 180 200 250 50 150 15¢ 200 250
n X

FIG. B. Rotation of a rectangle—larger grids.
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We also performed 3D tests of bubble propagation with
results similar to the 2D case.

2.5. Comparison with voF

Our algorithm is similar but not identical to the voF algo-
rithm of [107. Comparison between the two methods shows
that SURFER has better stability properties. To eliminate
flotsam vOF needs to reset periodically the volume fraction
to O or 1. This type of flotsam would otherwise bring the
simulation to a catastrophic end. However, the flotsam in
SURFER have a much milder behavior and we thus let them
live. Thus SURFER conserves volume exactly. As the discus-
sion below will show, flotsam mostly disappears when a
small surface tension is applied in the full SURFER scheme.

3. THE NAVIER-STOKES SOLVER

In many respects the Navier—Stokes part of SURFER is
independent of the interface part described in the previous
section. We chose to use rather classical finite difference
schemes. To bring the two fluid equations as close as
possible to the discretisation used in the code, we first effect
a transformation that highlights the momentum conserving
character. We then describe the two most original parts of
the solver: the multigrid algorithm and the surface tension
algorithm.

3.1. Definition of the Problem in Momentum Conserving
Form

We consider viscous incompressible flow with surface ten-
sion. For simplicity, we consider interfaces with a constant
tension o. We let the mean curvature of the surface be x. On
the surface we define also the unit normal n. We also define
a delta function concentrated on the surface o, defined in
more detail in Appendix A. The classical Navier-Stokes
equation [13, 16] for incompressible flow with surface
tension is

pldu+u-Vu)=—-Vp+V-pS+oxdsn, (16)
where p is the density, # is the shear viscosity, and § is the
rate of strain tensor

du;  Ou,
==L+ —. 17
Si dx; Ox; (17)
Together with {16) we reguire incompressibility

Vau=90 (18)

and the interface motion condition (2). Note that in (16) #
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and p may vary in space. In fact, they are slaved to the
volume fraction C

p=p,C+p,(1-C)
n=1C+n,(1-0C)

(19)
(20)
It is possible to rewrite the Navier—Stokes equation in an

explicitly momentum conserving form. We first define I1 to
be the advection tensor

M=u®u. (21)
We also define T, the capillary pressure tensor, as
T=—0o(l—n®n)dy, (22)

where I is the unit tensor ;. The fact that the normal is not
defined outside the surface may appear to be a problem for
the interpretation of this condition. In fact, when we derive
the above equation in Appendix A we also give meaning to
n(x} outside the surface S.

In Appendix A we find that the capillary force may be
represented as the divergence of T

gkndy=—V-T. (23}
Thus we find the momentum conserving form
d,pu=—=Vp—-V.(pII—nS+T). (24)
Note that we also have
-1
(25)

T=—-0¢ ) t“&1¥35,,
k=1

where the t¥ are D— 1 orthogonal tangent vectors to the
interface. We will return to this definition of T when we
discuss the discretisation of capillary terms.

In the simulations described here we have used either
periodic boundary conditions in all directions or free-slip in
one direction and periodicity in the remaining directions.
For instance, assuming that the free-slip condition is
imposed on the x,(z) axis,

_o, o _Ow_
3= ax3_5x3_
for x;=0,L;, (26)

while we impose a mirror condition on the volume fraction

ac _

0 fi
o, or

x3=0, L3. (27)
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3.2. Discretisation and Multigrid Poisson Solver

The spatial derivatives are discretized in a classical way
on a staggered MAC (marker and cell) grid [11]. In the
MAC grid velocity is precisely defined on the faces of the
cells, which is just what we want.'! To ensure incom-
pressibility, we first compute a “provisional” field u* from
the velocity and volume fraction fields at time 7, :

1 [r)
u*=u"—r|:V”-H"+EV”-(T”—45")] . (28)

The discretisation involves classical [ 117 centered finite dif-
ference derivatives V* and a similarly discretized tensor S*.
The calculation of the capillary pressure tensor T* will be
discussed in what follows. Equation {28) is advanced using
a split-explicit technique, the velocity field is first updated
with the viscous and capillary tensors, then with the advec-
tion term.

We then project the provisional field u* on a divergence
free field u"*’, using another classical method [11],

T

u* —~—Vp,
pH p

w+1 _

u (29)

where p is chosen so that

Vo =0, (30)

we thus ensure that the discrete incompressibility condition
1s verified for the SURFER scheme. To find p we need to solve
the Poisson equation

V"-(# V"p)=V”-u*. (31)

The solution of this equation is made difficuit by the fact
that p may vary sharply and by several orders of magnitude
in the domain. However, we found that it could be solved
quickly and accurately by a multigrid algorithm, We
adapted the “full multigrid” algorithm [14, t5, 17] to our
problem. Specifically, our boundary conditions are different
from those most frequently used [17]. In order to keep
calculations as simple as possible, the interpolation
operator [ 14, 15, 17] is of first order only. Despite this
rather drastic simplification the performance of the multi-
grid method is very good. Usually only a few iterations of
the full multigrid method are sufficient.

33, An  Algorithm for Surface
Microscopic Physics

Tension Inspired by

In this section we give an interpretation of surface tension
on mesoscopic scales, which may be defined as follows. On

! We do not use any “marker,” despite the histerical name of the method.
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the usual macroscopic scales of fluid mechanics interfaces
are represented by infinitely thin surfaces and singular
forces, whereas on microscopic scales matter is discrete. We
consider an intermediate, mesoscopic scale where matter is
continuous but interfaces have a finite thickness; one may
then observe a smooth transition from phase 1 to phase 2.
We introduce this point of view for numerical reasons. We
believe that it can lead to a useful algorithm for the inclusion
of surface tension terms such as those discussed above.

To simulate the mesoscopic scale we construct a
smoothly varying volume fraction C. For instance, we may
have

C(x}=f,, C(x') H(x —x'; £) dX., (32)

where the H(x; ¢} is a smooth integration kernel. We will let
H— 3¢ as £ 0. Such a smoothly varying field has been
introduced in the CSF method of Ref. [12]. An approxima-
tion to the singular tensor defined in Eq. (22) is then

T=o(I—-n®n) |V, (33)
where the vector n is defined by
v
n=—— (34)
IVC

as in the method of Ref [12]; this approximation of the
normal converges to the true normal on the interface as the
smoothing kernel becomes more concentrated on the inter-
face. Note that in Eq.(14) above we did not use the
smoothed function. Our numerical experience does not
show improvement when we use (34) instead of {14) in the
kinematic part of the code.

A mesoscopic physical interpretation of expressions (33)
and (34) may be obtained from the theory of capillarity
[19]. Consider an interface orthogonal to the ¢, direction
with coordinates £, {, tangent to the interface. Let the
interface be inside the interval ( —a, a) with C constant out-
side. Outside the interface the capillary pressure tensor is
null, T'= 0. Inside the interface region the “normal” pressure
s py=p+7T;; and the tangential pressure is p,=
p+ T, =p+T.. For an interface in thermodynamic equi-
librium, u is constant and uniform and the rate of strain ten-
sor § vanishes. Momentum conservation expressed in (24)
implies g, = po, where p, is the constant pressure outside
the interface. From (24) and {25) we obtain

o=[" (ro-pr)d, (35)

which coincides with the classical “mechanical” definition of
surface tension. Thus we see that our formulation of the
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Navier—Stokes equation with interfaces coincides with
classical continuum equations with sharp interfaces and
with the equilibrium mechanical properties of smooth inter-
faces. The latter property is shared with the Boltzmann
methods for interfacial flow [7].

Our discretisation of the expression (25) is somewhat
preliminary. We simply use a discrete equivalent of (33),
using the smoothed color field

-1
Ti=—a Y 1" V() (36}
k=1

where the vectors t'*) are estimated from a finite difference
approximation similar to Eqg. (14). We do not give the full
details of the computation here, since it may exceedingly
complicate the exposition. Several ways of improving on
this way of estimating T* were tried. Increasing the amount
of smoothing of the color fraction before estimating t'*)
removes some of the discretisation errors, as reported in
Section 4.2 below. However, we see that good results are
obtained even if no smoothing is performed.

3.4. Implementation of SURFER

The 2D version of SURFER was written and executed in
FORTRAN on a variety of workstations. It is rather simple
and short with a total of 1650 lines for the version used in
this section. The fastest speed was reached on an IBM RISC
(Model 370) and is 6.5 x 10* sites per second. However,
increasing the density ratio between the two fluids slows
down the computation as more multigrid iterations become
necessary. The 2D interface propagation part was also
implemented on the CM2 parallel machine.

The 3D version was also written in FORTRAN and ran on
several IBM RISC workstations. The code is running at half
the speed of its 2D version: 2.4 x 10* sites per second (on an
IBM RISC model 550). It is aiso of comparable length.

4. TESTS OF THE SURFACE TENSION ALGORITHM

Since the truly original part of SURFER is the surface ten-
sion algorithm, we paid particular attention to the testing of
the capillary effects. A particular pathology that afflicts the
surface tension method is the occurrence of parasite
currents, which we discuss in detail.

4.1. Bubble Tests

In order to verify that our surface tension method yields
Laplace’s law for equilibrium interfaces, we set up as initial
condition a distribution of C close to a bubble of radius R
centered in the computational domain. Both fluids have
equal densities and viscosities. The simulation is performed
in 2D in a 32 x 32 box and in 3D in boxes of 16 x 16 x 16
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FIG. 9. Observation of Laplace’s law in a bubble experiment in 2D.
Ratio between the measured pressure difference and its estimate based on
the simulation parameters. We plot here the results of 2D simulations.

and 32 x 32 x 32 lattice sites, and it is characterized by a
capillary number computed with mesh size A The surface
tension, viscosity, and box size are all equal to 1.

Laplace’s faw is well verified. Figures 9 and 10 show that
even small bubbles of radius 24 are not too distant from the
theoretical result. For large bubbles the measured error is
around 1% or lower.

4.2. Parasite Currents

Part of the price we have to pay for the locality of our
method is the presence of what, we suspect, are unavoidable
“parasite” currents. Even a macroscopically static bubble,
as the one used in the tests described above, is surrounded
by a small amplitude velocity field due to the slight
unbalance between the stresses at the sites in the interfacial
region. For instance, in Figs. 11 and 12 we consider the
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FIG. 10. Observation of Laplace’s law in 3D simulations.
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volume fraction at time 2
T v

20

FIG. 11. Parasite currents in a 32 x 32 bubble simulation shortly after
the beginning of the run.

relaxation of a bubble from somewhat arbitrary initial
conditions to a circular shape. As we can see in Fig.-12 the
bubble has relaxed to a circular shape, but it is surrounded
by a small amplitude velocity field having the fourfold
symmetry of the lattice.

Such “parasite currents” are absent on flat interfaces
parallel to the grid axes or making a 45° angle with them.,
However, they are observed for a generic orientation of a
flat interface with respect to grid directions. These parasite
currents were also observed in Boltzmann interfacial
methods and were discussed in detail in the thesis of
Gunstensen [8].

Both in the Boltzmann method and in SURFER, the
parasite currents scale with surface tension and viscosity.
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FIG. 12. Parasite currents in a bubble simulation after equilibration.
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FIG. 13. Dimensiouless magnitude K=wu.,n/¢ of the parasite
currents for various experiments and parameter values.

Dimensional analysis shows that the maximum velocity
around a bubble of radius R is given by u_,,, = Ko/4, where
K is some constant. Numerical experiments verify this law
with K=~ 1072 Our numerical experiments on parasite
currents are summarized on Fig. 13. There we plot the
measured values of K against the dimensionless radius of the
bubble R/R,, where R, is the capillary-viscous length scale
of fluid 1 defined by R,=p,vi/o. The experiments were
repeated for several values of the grid spacing 4 and radius
R. We investigated three orders of magnitude of the ratio
R/R,. The observed values of K are somewhat fluctuating in
time and this explains the scatter of the data in Fig. 13.
However, K remains of the same order of magnitude for
R/R, < 10. The fluctuations of the parasite currents become
larger and more irregular as R/R, increases. This may be
explained by the fact that R/R, is proportional to the
Reynolds number based on parasite current velocity and
bubble size Re, = u,,,, R/v. As this number becomes large
the fluctuations of parasite currents become larger also and
eventually interfaces start sputtering debris. Thus there is an
intrinsic upper limit on the size of the objects we can
simulate with SURFER without generating debris.

" On the other hand, for very small values of R/R, capillary
effects are negligible and parasite currents should have little
eflect since the dynamics is controlled by viscous forces. The
order of magnitude of K is similar for the 2D Boltzmann
algorithm and we expect similar limitations to hold there.
We are not aware, however, of a systematic study of the
dependence of parasite currents on length scales in the
Boltzmann metheod.

The parasite currents may be attenuated by a smoothing
of the volume fraction C used to calculate T; in the right-
hand side of (33). The smoothing is realized in 2D by
repeated applications of a Laplacian filter # that trans-
forms C into % (C) defined by

F(O)x)=1C+3[Clx—¢,/2) + C(x +¢,/2)

+ C{x —¢,/2)+ Clx +¢,/2)]. (37)

584/113/1-10
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We then repeat the application of the filter m times yielding
C = F ")(C). This filter damps small scale variations of C.
The measured values of K may be decreased by a factor of
2 or 4 by a few applications of the filter. The optimal number
of filters seems to be m =1 or 2. With more filtering, the
amplitude of the parasite currents stops decreasing.

4.3. Capillary Waves

We set up capillary wave experiments in a series of 2D
square boxes of different sizes N = 1/A. The initial conditions
are zero velocity. The interface is a sine wave with a
wavelength equal to the box size. For a small amplitude
wave, linearized hydrodynamics predicts a dispersion
relation [13],

a/p = w*/[k* tanh(kL/2)]. {38)
We performed a series of experiments and compared the
measured ratio on the right-hand side of Eq. (38) to the
parameter values. The amplitude of the wave was decreased
until no variation in the measured frequency was seen. The
results are shown on Fig. 14, The method is seen to
converge to the correct value of the frequency.

4.4. Simulations of Colliding Droplets in 2D

An example of the ability of our code to simulate the
reconnection of interfaces is shown on Figs. 15 and 16. Two
droplets of denser fluid are initially sent towards each other.
The fluid density ratio is 2. For coarse grids (32 x 32} the
droplets simply fuse. For finer grids, a small region of light
fluid is trapped in the dense fluid. All parameters are in
Tables I and II.

The formation of the trapped region may be explained in
the lubrication limit. In that iimit a Poiseuille flow forms in
the low density channel between the two droplets. To expel
the fluid from that layer, the pressure has to be higher in the
center. This in turns repels the bubbles away from each
ather in the center.
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FIG. 14. Measurements of frequency in a capillary wave experiment.
The righi-hand side of the dispersion relation (36} is plotted versus mesh
size fi. The theoretical value is 0.1.



144

LAFAURIE ET AL.

TABLE1

Parameters for All Runs

Parameter Value
DiLe 0.333
Re = (du) Div\® 533
o1im 2
11/1, 1

Record 2 Record 13
a b
201 20r-
OO
x 2 x 2
Record 15 Record 20
T v ]
c d
20 20} .
> >
X 20 ¥ 20

FiG. 15. Collision of two droplets in run A. A coarse (32 x 32) grid is
used. The times are, in arbitrary units: (a) 1, (b) 12, (c) 14, and (d) 19.

4.5. Simulations of Colliding Droplets in 3D

We have repeated the droplet collisions simulations in
3D. In fact, the three series of images shown in Figs. 17, 18,
and 19 are the initial results of a project, dealing with the
guantitative validation of SURFER against experimental

Record 10 Record 12
r —— O -
a b
100F 1 100+ 1
> >
50t 4 50+
50 00 ~ 50 100
X X
Record 13 Record 15
v — —
c d
100} 1 1001 1
> >
sor 50
50 100 50 100
X X

FIG. 16. Droplet collision in run B: (a) 9, (b) 11, (c) 12, (d) 14.

“ DL is the ratio of the initial diameter of the objects 10 the box size.
b Au is the relative velocity of the two droplets.

[21,22,20] results, that we have just started. For
typographical reasons we can show only some snapshots of
these simulations but complete movies will be available on
Internet? in the near future. The three sequences illustrate
drop-drop collision at different Weber numbers and impact
parameters. All the parameters and their values are defined
in Tables T and II. Run E, the longest simulation, took
about 3h to complete on an IBM RS6000/550. The
interface between the two {luid phases is visualized as an
isosurface at C=0.5.

The first two sequences (Figs. 17 and 18) show collisions
at moderate Weber numbers (13). The first is head-on, i.e.,
with axisymmelric initial conditions, while the impact
parameter of the latter is slightly larger than the droplet
radius. As shown in Fig. 17, the two initial droplets coalesce
in a single object undergoing large amplitude oscillations
that are not, however, large enough to shatter it. These
oscillations are eventually dissipated by viscous damping
and loss ol energy to the surrounding fluid. In run D
angular momentum conservation superimposes to the
fluctuations a rotation, as can be clearly seen in Fig. 18.

The last case (run E) is gualitatively dilferent. Here the
Weber number (133) is large enough so that the final result
of the collision is not a single object but rather unbound
droplets moving away from each other. On Fig. 19 we can
distinguish three main stages in the collision: merging of the
two droplets in a single one; transformation of the resulting

TABLE IT

Parameter Values for Each Run

Parameter\Run A B C D E

Size 32x32 128x 128  (32) (32) (32p
W =p,(4u)? Dio 13 13 13 133 133
b/D 0 0 0 082 027

2 The movies will be stored as MPEG movies aceessible via the CR54
World Wide Web (WWW) scrver. The relevant Universal Document
Identifier (UDI) address will be: nhttp://www.crs4.it:/Animate/
Animations.html. WWW software may be retrieved by anonymous
FTP from various ftp sites.
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(a) (b) (c) (d) (e)

FIG. 17. Droplet collision in run C. Initial conditions are axisymmetric. The snapshots are taken at dimensionless times: (a} 0.30, (b) 0.53, (¢) 0.75.
(d) 1.05, and (e) 2.1. Times are dimensionless based on the droplet relative velocity Au and on the droplet diameter D.

(a) (b) (©) (@ (e) ()

FIG, 18. Droplet collision in run D. The two droplets merge with a non-zero angular momentum. The resulting rotation for the final droplet is clearly
seen. Dimensionless snapshots times are: (a) 0.3, (b) 2.0, (¢) 2.6,(d) 29, (e} 44, and (f) 59.

0]

FIG. 19. Droplet collision at large Weber number (run E). We can distinguish three main stages in the collision: merging of the two droplets; trans-
formation of the resulting droplet into a torus-like object; break up of the latter into two main pieces. The snapshots are at times 03, 1.1,2.2,59, 119,
and 17.9. At time 11.9 we see how the toroidal bubble touches the floor of the simulation box.
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droplet into a torus-like object; break up of the latter into
two main picces (plus some debris). Each one of the transi-
tions mentioned above involves a dramatic change of the
interface topology: from two spheres to a single one; from a
sphere to a torus; and from a torus back to two pieces, We
do not exclude the formation of bubbles inside the pieces as
seen in run B. Larger lattices would be necessary to resolve
this issue. More generally, we do not yet have quantitative
results, but the qualitative behavior seen in the simulation is
consistent with the experimental pictures shown in
[21, 22, 20].

5. CONCLUSION

We have presented here a new algorithm, based on voF,
able to simulate efficiently problems of interface breakup
and reconnection in two and three dimensions. This new
method has several interesting theoretical features: it con-
serves volume exactly and it takes into account the inherent
symmetry between the two sides of an interface. The surface
tension and Navier-Stokes solver we associate with it are
also relatively simpie and lead to fast computer implementa-
tions,

The algorithm has some remaining problems. The surface
tenston aigorithm leads to pathological effects such as
parasite currents, especially at high values of the surface
tension. However, tests of the algorithm shows that the
undesirabie effects are small and comparable to those of
other methods, such as the Boltzmann lattice gas or the
original voF. Simulations of physical problems show that
our method treats correctly reconnection of interfaces in
two and three dimensions. The ability of SURFER to perform
three-dimensional simulations is one of its main advantages.
It thus looks promising for the simulation of complex flurd
dynamics problems.

APPENDIX A: DERIVATION OF THE
CAPILLARY STRESS TENSOR

We start with some definitions. We consider a smooth
surface Sin 3D space and a reference point O on the surface.
Near ¢ we define a system of curvilinear coordinates
(€,(x), Ea(x), E4(x)). This system is orthogonal and nor-
malised so that

V. E -V, E=0, (39)

Moreover, the system is chosen so that the surface is the
locus of points such that

£4(x)=0. (40)
We then define the delta function on the surface as
O5(x)=06(<5(x)) (41)
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and define the unit normal as

n(x) = V(&,(x)). (42)
Equation (42) extends the definition of n outside the inter-
face. Moreover, near .S the unit normal n is approximately
independent of £, and

n=n(é,, <5, 0) (43)
Then we find that
VId—n®n)d,]
=Vég—(V-n)ndg—(n-V)ndy) (44)
We note the identity
V-on=—x. (45)

For a derivation of Eq. (45), see, for instance, [ 127 but note
that we take u to be the wnit normal. Another useful identity
which we obtain after some simple algebra using (39) is

n-V=2/8¢,. {46)
Using (44), (45), and (46) cne obtains
d
VIil—n®n)ds]1=Vds+xn 6S¥%—n de.  (47)
]
Using (43) we let n escape from under 8/ 5,
é
VIE—n®n)d;]=Vds+xn 5S—na—i~55, {48)
3
and from (39), (42} we obtain
Vil—n®n)ds]=xnds. (49)

Equation (49) yields Eq. (23) in the main text.
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